Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 15(4): 446-56, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721573

RESUMO

After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.


Assuntos
Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/biossíntese , Proteínas Imediatamente Precoces/genética , MicroRNAs/genética , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Córnea/patologia , Córnea/virologia , DNA Viral/genética , Encefalite/virologia , Regulação Viral da Expressão Gênica , Células HEK293 , Herpes Simples/mortalidade , Herpes Simples/virologia , Humanos , Masculino , Camundongos , Gânglio Trigeminal/patologia , Células Vero , Latência Viral
2.
mBio ; 1(4)2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20842206

RESUMO

Evidence has recently accumulated suggesting that small noncoding RNAs, and particularly microRNAs, have the potential to strongly affect the replication and pathogenic potential of a range of human virus species. Here, we report the use of deep sequencing to comprehensively analyze small viral RNAs (18 to 27 nucleotides [nt]) produced during infection by influenza A virus. Although influenza A virus differs from most other RNA viruses in that it replicates its genome in the nucleus and is therefore exposed to the nuclear microRNA processing factors Drosha and DGCR8, we did not observe any microRNAs encoded by influenza virus genes. However, influenza virus infection did induce the expression of very high levels-over 100,000 copies per cell by 8 h postinfection-of a population of 18- to 27-nt small viral leader RNAs (leRNAs) that originated from the precise 5' ends of all eight influenza virus genomic RNA (vRNA) segments. Like the vRNAs themselves, our data indicate that the leRNAs also bear a 5'-terminal triphosphate and are therefore not capable of functioning as microRNAs. Instead, the high-level production of leRNAs may imply a role in another aspect of the viral life cycle, such as regulation of the switch from viral mRNA transcription to genomic RNA synthesis.


Assuntos
Regiões 5' não Traduzidas , Regulação Viral da Expressão Gênica , Vírus da Influenza A/genética , Influenza Humana/virologia , RNA não Traduzido/genética , RNA Viral/genética , Animais , Linhagem Celular , Cães , Humanos , Vírus da Influenza A/metabolismo , RNA não Traduzido/metabolismo , RNA Viral/metabolismo
3.
Virology ; 405(2): 592-9, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20655562

RESUMO

Rhesus rhadinovirus (RRV), a primate gamma-herpesvirus related to human Kaposi's sarcoma-associated herpesvirus (KSHV), causes a similar pattern of pathogenesis. Previously, RRV was shown to express 7 pre-microRNAs (pre-miRNAs) in latently infected cells. Using deep sequencing, we analyzed the pattern of small RNA expression in vivo using latently RRV-infected B-cell lymphoma and retroperitoneal fibromatosis tissues. We identified 15 virally encoded pre-miRNAs in both tumors, including all previously reported RRV pre-miRNAs. Although all 15 RRV pre-miRNAs, like all 12 KSHV pre-miRNAs, are located 3' to the conserved viral ORF71 gene and in the same transcriptional orientation, only one RRV miRNA is homologous to a KSHV miRNA. One previously identified RRV miRNA, miR-rR1-3, is actually a miRNA offset RNA (moRNA) derived from sequences located adjacent to pre-miR-rR1-3. Several other RRV-derived moRNAs were obtained, including one recovered >600 times. Together, this research provides a comprehensive list of the miRNAs and moRNAs encoded by RRV.


Assuntos
Fibroma/virologia , Linfoma de Células B/virologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Neoplasias Retroperitoneais/virologia , Rhadinovirus/metabolismo , Rhadinovirus/patogenicidade , Animais , Linhagem Celular , Células Cultivadas , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Humanos , Macaca mulatta , MicroRNAs/química , MicroRNAs/genética , RNA Viral/química , RNA Viral/genética , Rhadinovirus/genética , Infecções Tumorais por Vírus/virologia , Latência Viral
4.
J Virol ; 84(2): 695-703, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889781

RESUMO

We have used deep sequencing to analyze the pattern of viral microRNA (miRNA) expression observed in the B-cell line BC-3, which is latently infected with Kaposi's sarcoma-associated herpesvirus (KSHV). We recovered 14.6 x 10(6) total miRNA cDNA reads, of which a remarkable 92% were of KSHV origin. We detected 11 KSHV miRNAs as well as all 11 predicted miRNA or passenger strands from the miRNA duplex intermediate. One previously reported KSHV miRNA, miR-K9, was found to be mutationally inactivated. This analysis revealed that the 5' ends of 10 of the 11 KSHV miRNAs were essentially invariant, with significantly more variation being observed at the 3' end, a result which is consistent with the proposal that the 5'-proximal region of miRNAs is critical for target mRNA recognition. However, one KSHV miRNA, miR-K10-3p, was detected in two isoforms differing by 1 nucleotide (nt) at the 5' end that were present at comparable levels, and these two related KSHV miRNAs are therefore likely to target at least partially distinct mRNA populations. Finally, we also report the first detection of miRNA offset RNAs (moRs) in vertebrate somatic cells. moRs, which derive from primary miRNA (pri-miRNA) sequences that immediately flank the mature miRNA and miRNA strands, were identified flanking one or both sides of nine of the KSHV miRNAs. These data provide new insights into the pattern of miRNA processing in mammalian cells and indicate that this process is highly conserved during animal evolution.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , MicroRNAs/metabolismo , RNA Viral/metabolismo , Animais , Linfócitos B/virologia , Sequência de Bases , Linhagem Celular , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Latência Viral
5.
J Virol ; 84(2): 1189-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889786

RESUMO

Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.


Assuntos
Gânglios Espinais/virologia , Herpesvirus Humano 2/fisiologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Região Sacrococcígea/virologia , Latência Viral , Sequência de Bases , Linhagem Celular , Regulação Viral da Expressão Gênica , Herpes Simples/virologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Humanos , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Virol ; 83(20): 10677-83, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656888

RESUMO

Analysis of cells infected by a wide range of herpesviruses has identified numerous virally encoded microRNAs (miRNAs), and several reports suggest that these viral miRNAs are likely to play key roles in several aspects of the herpesvirus life cycle. Here we report the first analysis of human ganglia for the presence of virally encoded miRNAs. Deep sequencing of human trigeminal ganglia latently infected with two pathogenic alphaherpesviruses, herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV), confirmed the expression of five HSV-1 miRNAs, miR-H2 through miR-H6, which had previously been observed in mice latently infected with HSV-1. In addition, two novel HSV-1 miRNAs, termed miR-H7 and miR-H8, were also identified. Like four of the previously reported HSV-1 miRNAs, miR-H7 and miR-H8 are encoded within the second exon of the HSV-1 latency-associated transcript. Although VZV genomic DNA was readily detectable in the three human trigeminal ganglia analyzed, we failed to detect any VZV miRNAs, suggesting that VZV, unlike other herpesviruses examined so far, may not express viral miRNAs in latently infected cells.


Assuntos
Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 3/metabolismo , MicroRNAs/metabolismo , RNA Viral/metabolismo , Gânglio Trigeminal/virologia , Latência Viral , Idoso , Alphaherpesvirinae/classificação , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Células HeLa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Humanos , Masculino , MicroRNAs/química , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Viral/química , RNA Viral/genética , Células Vero
7.
Genes Dev ; 23(10): 1151-64, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19451215

RESUMO

The closely related microRNA (miRNA) and RNAi pathways have emerged as important regulators of virus-host cell interactions. Although both pathways are relatively well conserved all the way from plants to invertebrates to mammals, there are important differences between these systems. A more complete understanding of these differences will be required to fully appreciate the relationship between these diverse host organisms and the various viruses that infect them. Insights derived from this research will facilitate a better understanding of viral pathogenesis and the host innate immune response to viral infection.


Assuntos
MicroRNAs/metabolismo , Interferência de RNA , Viroses/imunologia , Viroses/metabolismo , Fenômenos Fisiológicos Virais , Replicação Viral , Vírus , Animais , Humanos , Imunidade Inata/imunologia , Plantas/virologia , Viroses/virologia , Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...